
LECTURE XXII

1. Introduction

1.1. Motivating Example. Consider the sum of numbers

1 +
1

2
+

1

4
+

1

8
+ · · ·

We are adding powers of 1
2 , until the end of life. Does this sum converge, i.e. add up to a �nite number? If

so, is there a nice formula to �nd the sum of other sum of powers? Or does it diverge to in�nity?
Poll: Finite (True) or In�nite (False)?
The above is an example of in�nite series. The word �in�nite� means there are in�nite number of terms.

The word �series� means that one is adding up all those terms.
We say an in�nite series converges when it yields a �nite real number. We say an in�nite series diverges

when it is NOT convergent. It does not necessarily mean it is in�nity. This notion will be more clari�ed
once we connect sequence and series.

To combine with what we learn from before about sequences, we note that the above series is a sum of a
sequence no other than

an =
1

2n
, n = 0, 1, 2, . . .

Then, to have a short hand notation for the above series, we write

1 +
1

2
+

1

4
+

1

8
+ · · · =

∞∑
n=0

1

2n

note that the series starts at n = 0. You must always check whether the short hand sigma notation
and its bounds match with the series you are representing. For example, a series like

1

3
+

1

9
+

1

27
+ · · · =

∞∑
n=1

1

3n

now starts with n = 1. You will do more exercises during recitation.
In general, we write an in�nite series as

∞∑
n=1

an

where an is a speci�ed sequence.

1.2. Technique of Reindexing. Poll: How do we rewrite
∑∞

n=0
1
2n so that n starts at 1 instead of 0,

without changing the terms of the series?

A :

∞∑
n=1

1

2n+1

B :

∞∑
n=1

1

2n−1

One sanity check after you made your choice is to check whether the �rst term is the same as that of the
original. For an = 1

2n , n = 0, 1, 2, . . ., choice A gives you its 1st term 1
21+1 = 1

4 6= 1 = a0 yet B gives you
1

21−1 = 1 which is more believable.
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A common technique sometimes used to compare series (which we learn in a later section) is to shift the
index. Take the same example above, we can start the series at n = 2 and shift the index of the summand
from an to an−1 namely,

1 +
1

2
+

1

4
+

1

8
+ · · · =

∞∑
n=2

1

2n−2

(note the original sequence is an = 1
2n for n starting at 0, now to shift by 2 units on n, an will become

an−2 = 1
2n−2 , as stated.)

1.3. Sequence of Partial Sums. To analyze the convergent/divergent behaviour of a series, we often
consider the partial sum of a series, that is,

SN =

N∑
n=1

an

namely, we are only adding up to N terms of the sequence. Now, SN itself is a sequence in the index
N . By de�nition of SN , we see that

lim
N→∞

SN = lim
N→∞

N∑
n=0

an =

∞∑
n=0

an

i.e., the limit of the sequence of partial sums SN is the value of the series. If the sequence SN

converges to some �nite value L, then the series is equal to L, i.e.

∞∑
n=0

an = lim
N→∞

SN = L

We thus have reduced the study of a series down to the study of the convergence of its sequence
of partial sums. If we can �nd a nice formula for SN , we can study the convergence/divergence properties
of the series with even more ease.

Example. Take the an = 1
2n−1 as an example.

∞∑
n=1

1

2n−1

The partial sum is

SN =

N∑
n=1

1

2n−1

In fact, for each N , at least for N small, we can write out the �rst few terms of SN

S1 = 1

S2 =

1∑
n=0

1

2n−1
= 1 +

1

2
=

3

2

S3 =

2∑
n=0

1

2n−1
= 1 +

1

2
+

1

4
=

7

4

S4 =

3∑
n=0

1

2n−1
= 1 +

1

2
+

1

4
+

1

8
=

15

8

.

.

.

Asking whether the sequence SN converges is equivalent to asking whether
∑∞

n=1
1

2n−1 yields a
�nite number.
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1.4. A Special Riemann Sum Interpretation of a Series. For a series
∞∑

n=1

an

de�ne a function
f (x) = an, n− 1 ≤ x ≤ n, n = 1, 2, . . .

This series is no di�erent from a Riemann sum of f with subinterval length ∆x = 1. Let's draw a picture
for, say the series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

(called the Harmonic series). Here, the function that corresponds to this series is the step function

f (x) =
1

n
, n− 1 ≤ x < n, n = 1, 2, . . .

(try plotting this, it should be boxes of equal width but descending heights. If you don't know how to start,
plug in n = 1, graph f (x) = 1, 0 ≤ x ≤ 1, and go on for each n).

This technique comes in handy when we try to check if a series is convergent. This particular series is
related to the divergent integral ∫ ∞

1

1

x
dx

but not exactly the same. We will see this more precisely in a later section (integral comparison test).

2. Special Series

2.1. Geometric series. For a number a 6= 0 and a ratio r, consider the sum

a + ar + ar2 + · · · = a

∞∑
n=1

rn−1

For what r does this series converge? Suppose r = 1.
∞∑

n=1

rn−1 = 1 + 1 + 1 + · · · =∞

which makes sense. Furthermore, for r ≥ 1, by �comparison�,
∞∑

n=1

rn−1 ≥
∞∑

n=1

1 =∞

In fact, the series converges for |r| < 1, or −1 < r < 1 (note the possibility of negative ratios). There is a
beautiful formula for the series with |r| < 1,

∞∑
n=1

rn−1 =
1

1− r

In other words, we end up with results like

1 +
1

2
+

1

4
+

1

8
+ · · · =

∞∑
n=1

(
1

2

)n−1

=
1

1− 1
2

= 2

1− 1

2
+

1

4
− 1

8
+ · · · =

∞∑
n=1

(
−1

2

)n−1

=
1

1−
(
− 1

2

) =
2

3

For |r| ≥ 1, the formula no longer makes sense. Say, for r = 2, the formula would read

1 + 2 + 22 + 23 + · · · = 1

1− 2
= −1

2

which is garbage.


